

Name: _____

Date: _____

Answer Key: When the Bio-Engine Overclocks: 6th Grade Exercise Physiology Challenge

Evaluate how cellular energy systems and structural adaptations respond to physical stress through comparative analysis of athletic performance scenarios.

1. A cross-country skier competing for two hours relies heavily on mitochondrial biogenesis. Which chronic adaptation best explains their increased efficiency?

Answer: A) Enhanced capillary density for better nutrient exchange

Increased capillary density is a long-term (chronic) adaptation that allows for more efficient delivery of oxygen and removal of waste from muscles.

2. True or False: Hypertrophy occurs when muscle fibers increase in number rather than increasing in individual size.

Answer: B) False

Hypertrophy refers to the increase in the size of existing muscle fibers; an increase in the number of fibers is called hyperplasia, which is rare in humans.

3. During a 400-meter dash, the body transitions from stored phosphocreatine to _____, breaking down glycogen without using oxygen.

Answer: B) Anaerobic Glycolysis

Anaerobic glycolysis is the process by which the body breaks down glucose for energy during high-intensity exercise when oxygen demand exceeds supply.

4. Which scenario demonstrates an acute response to a single bout of plyometric (jumping) exercises?

Answer: C) Immediate recruitment of Type II 'fast-twitch' muscle fibers

Fiber recruitment is an immediate, acute response to the demand of an exercise, whereas the other options are long-term adaptations.

5. To prevent 'blood pooling' and assist the venous return of blood to the heart after a vigorous workout, an athlete should perform a _____.

Answer: C) Active cool-down

Name: _____

Date: _____

An active cool-down keeps the 'skeletal muscle pump' working, which helps push blood back to the heart and prevents dizziness or pooling in the limbs.

6. True or False: Stroke volume—the amount of blood ejected per beat—increases as a chronic adaptation to cardiovascular training.

Answer: A) True

Through aerobic training, the heart becomes stronger and the chambers can hold and pump more blood with each individual contraction.

7. Analyze the role of Myoglobin in exercise. Why would a deep-sea diver or an endurance athlete have higher concentrations of this protein?

Answer: A) It stores oxygen directly within the muscle tissue

Myoglobin is an iron- and oxygen-binding protein found in muscle tissue that provides an extra reserve of oxygen for muscles during activity.

8. The 'Overload Principle' suggests that for a _____ adaptation to occur, the system must be stressed beyond its normal limits.

Answer: C) Chronic

Chronic adaptations (long-term changes) only happen when the body is forced to adjust to a workload that is more difficult than what it is used to.

9. True or False: During high-intensity intervals, the respiratory exchange ratio (RER) indicates the body is burning primarily fats instead of carbohydrates.

Answer: B) False

High-intensity exercise relies almost exclusively on carbohydrates because they can be broken down more quickly than fats to meet high energy demands.

10. A student notices they are breathing heavily even after they stop running. This physiological phenomenon is known as EPOC. What is the body primarily doing?

Answer: B) Restoring oxygen debt and clearing metabolic byproducts

EPOC (Excess Post-exercise Oxygen Consumption) is the 'afterburn' where the body works to return to its resting state and repair tissues.